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• Rules of Quantum Mechanics:

• Let us begin this lecture with the citation taken from the Omnés book:

• ”Every physical system, whatever an atom or a star is assumed
to be described by a universal kind of mechanic which is Quantum
Mechanics”.

• Thus, one should quantize both probability calculus and the concept of
(classical) composite systems.

• We remind that we want to understand , among other things, the name:
quantum correlations.

• It is desirable to list the rules of quantum theory.
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• Rule 1. The theory of given individual isolated physical system can be
entirely expressed in terms of a specific Hilbert space and mathematical
notions associated with it, particularly a specific algebra of operators.

• Rule 2. A specific self-adjoint operator is associated with an isolated
physical system. This operator is the system Hamiltonian H. It
determines Heisenberg’s dynamics (which replace Newton’s law of
motion). The dynamics is expressed by a continuous 1-parameter unitary
group of operators U(t), t ∈ R having the Hamiltonian H as its
infinitesimal generator. In particular, the evolution of an observable O
is given by Ot = U(t)OU∗(t) ≡ αt(O) (in Heisenberg picture) while the
evolution of a state is given by Ψt = U(t)Ψ (in Schrödinger picture).
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• Rule 3. On the specific algebra A of operators associated with a given
physical system there exist a family of linear positive normalized forms
on A. They form the set of states S. The interpretation of a state φ
(φ ∈ S, A ∋ O → φ(O) ∈ C) as given by Born is that the number φ(O)
(real if φ and O are self-adjoint) is the expectation value of observable O.

• and:

• Rule 4. Let two physical systems S1 and S2 be represented by Hilbert
spaces H1, H2, algebras A1, A2, sets of states S1, S2 and finally
Hamiltonians H1, H2 respectively. When they are combined in one
(composite) system S then its Hilbert space H is equal H1 ⊗ H2 and
its algebra A = A1 ⊗ A2. When the systems S1 and S2 are dynamically
independent, Hamiltonian associated with the composite system is given
by H = H1 ⊗ 1+ 1⊗H2.
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• and finally

• Rule 5. Let a composite system (A ≡ A1 ⊗ A2,SA, αt(·)) be given.
When, one is interested only in time evolution of a subsystem, say that
labeled by ”1”, then a reduction of (global) Hamiltonian type dynamics
should be carried out. As a result, time evolution of the subsystem ”1” is
described by a one parameter family of (linear) maps Tt : A1 → A1 such
that Tt(f) ≥ 0 for any t and a positive f ∈ A1 (so positivity preserving),
and Tt(1) = 1.

• To comment the last rule we add

• Remark 6. – If one adds Markovianity assumption then {Tt} is also a
semigroup, i.e. Tt ◦ Ts = Tt+s for non-negative t and s.

– Frequently, more stronger assumption on positivity - complete
positivity - is relevant.
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• Example 7. (Dirac’s formalism)

1. (Dirac’s Quantum Mechanics.) A separable, infinite dimensional
Hilbert space H is associated with a system. The specific algebra A
is taken to be B(H) - the set of all linear, bounded operators on H.
The set of states is determined by density matrices, i.e. positive trace
class operators with trace equal to 1. The expectation value < A >
of A = A∗ ∈ B(H) at a state ϱ is given by < A >= TrϱA where ϱ is
a density matrix.

2. (composite system in Dirac’s formalism) Let Si be a physical system,
Hi be an associated Hilbert space, B(Hi) be an associated algebra and
Si denote set of states (density operators) for i = 1, 2. Then Hilbert
space, associated algebra and set of states for composite system are
given by H = H1⊗H2, B(H1⊗H2) ≈ B(H1)⊗B(H2) and S where,
in general contrary to the classical case, one hasS ̸= conv(S1⊗S2)!!!

IFTiA Gdańsk University – Poland 5



Quantum correlations III. Gdansk-Houston, March, 2015

• and we wish to point out that the just given scheme also contains the
classical physics!

• Example 8. (Classical systems)

1. (classical system) Assume that A is an abelian C*-algebra with unit 1.
Then (according to Gelfand-Neimark theorem (see eg. Sakai’s book)
A can be identified with the C∗-algebra (see below for the definition
of C∗-algebra) of all complex valued continuous functions on Γ,
where Γ is a compact Hausdorff space. Hence, a state (normalized,
positive, linear form) on A leads to a probability measure on Γ (as it
was pointed out in the last lecture). Consequently, the probabilistic
scheme described in last lecture was recovered.

IFTiA Gdańsk University – Poland 6



Quantum correlations III. Gdansk-Houston, March, 2015

and
2. (classical composite system) Take (for i = 1, 2) two abelian C∗-

algebras Ai with unit and combine them in one system (cf Rule 4.4).
Then we have A ≡ A1 ⊗ A2 = C(Γ1) ⊗ C(Γ2) ≈ C(Γ1 × Γ2). Take
a state (normalize, linear, positive form) on A. Then, using the last
lecture, there exists a probability measure on Γ1 × Γ2. Thus, we
recover a classical composite system described in the previous section.
In particular, (as it was said at the end of the previous lecture) one
has S = conv(S1 ⊗S2)!

• To comment the just presented Rules as well as to make clear “specific
algebra of operators” (Rule 1) we need some definitions.
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• Definition 9. Let A be a Banach space. We say that A is a Banach
algebra if it is an algebra, i.e. a multiplication

A× A ∋ ⟨f, g⟩ 7→ fg ∈ A (1)

is defined in such way that for every f, g ∈ A one has

∥fg∥ ≤ ∥f∥ ∥g∥ (2)

It follows that multiplication in Banach algebra is separately continuous
in each variable.
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• Definition 10. An involution on an algebra A is a antilinear map
f → f∗ such that for all f, g ∈ A and λ ∈ C one has

(f∗)∗ = f (3)

(fg)∗ = g∗f∗ (4)

(λf)∗ = λf∗ and (f + g)∗ = f∗ + g∗ (5)

A ∗-algebra is an algebra with involution. A ∗-Banach algebra A is a
∗-algebra such that A is a Banach algebra and ∥f∗∥ = ∥f∥.

Definition 11. A C*-algebra A is a ∗-Banach algebra such that the
norm ∥ · ∥ satisfies

∥ff∗∥ = ∥f∥2 (6)
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• Finally:

• Definition 12. A C∗-algebra M, acting on a Hilbert space H, that is
closed in the weak operator topology and contains the unit 1 is said to
be a von Neumann algebra (or equivalently, a W ∗-algebra).

• Example 13. 1. Mn( C) - all n× n matrices with complex entries.
2. Denote by B(H) the family of all bounded linear operators on a Hilbert

space H. B(H) is a von Neumann algebra.

• It is worth pointing out that a scheme based on B(H) (Dirac’s formalism)
is not able to describe all quantum systems!!!

• Moreover, there is also a warning (Winter, Phys. Rev. 71, 737 (1947)).
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• Proposition 14. It is impossible to find two elements a, b in a Banach
algebra A such that

ab− ba = 1. (7)

• The principal significance of Proposition 14 stems from the following
conclusion: it is impossible to realize canonical commutation relations
in terms of a Banach algebra.

• So, it is impossible to carry out a canonical quantization on finite
dimensional spaces.

• Consequently, it is difficult to speak about quantumness of finite
dimensional systems.

• Now we are in a position to comment the above listed Rules for
quantization.
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• Firstly, the specific algebra mentioned in Rule 1 means the collection of
bounded functions of, in general, unbounded operators.

• Note that such operators appear in the theory due to the procedure of
quantization. On the other hand, Proposition 14 clearly shows that finite
dimensional models are not able to describe genuine quantum systems.
Therefore, they can only provide so called “toy” models!

• Rule 3 is saying that a (quantum) observable is a non-commutative
counterpart of a stochastic variable.

• In particular, this implies that quantum probability should appear.

• The standard form of non-commutative probability calculus is provided
by the pair (A, φ), where A is a C∗-algebra, φ is a state, i.e. a linear
functional on A such that φ(1) = 1, and φ(a) ≥ 0 for all a ≥ 0.
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• It is important to note here that on the additional assumption that A is
abelian one can recover the classical probability scheme.

• Namely, Gelfand-Naimark theorem, any abelian C∗-algebra A with unit
1 can be identified with the collection of all complex valued functions
defined on a compact Hausdorff space E.

• This implies the existence of a probability measure µ on X, which is
uniquely determined by a state.

• Consequently, fundamentals of a (classical) probability were obtained.

• But, as it is impossible to embed a non-commutative C∗-algebra into
commutative one, there is no hope to embed quantum probability into
larger classical probability scheme.
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• Consequently, there is not “room” for hidden variable models

• There is also another extremely important motivation for more “refined”
algebras - for W ∗-algebras.

• Namely, classical mechanics demands the differential and integral calculus
for its description.

• It is natural to expect that quantum mechanics demands non-
commutative calculus for its description.

• This is the case! (functional analysis).

• Consequently, to simplify our exposition of quantum rules, by a specific
algebra we will mean either C∗-algebra or W ∗-algebra.
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• The Rule 4 is saying that to form a bigger system consisting of two
smaller subsystems, a tensor product of appropriate algebras should be
taken.

• As this concept for Banach spaces is not trivial one, we
will clarify this notion in the next lecture.

• We wish to close this lecture with remarks concerning the following
question: Why we do not restrict ourselves to Dirac’s formalism only?

• In other words, why we will not restrict ourselves to formalism specified
in Example 7?

• The answer follows from the following observations (see, for example R.
Haag book: Local Quantum Physics):
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• Individual features of a system as well as a relation between a system
and the region occupied by this system should be taken into account,
(examples will be provided in next lectures)

• To take into account a causality one should have a possibility to say how
far away is a subsystem S1 from S2 (in classical case, subsystems are
described by subspaces of an Euclidean space. So this question has an
easy solution).

• The above question, for quantum case, demands more general setting
than that one which is offered by Example 7. Thus, Dirac’s formalism is
not enough!

• Quantum field theory demands more general approach than that given by
Dirac’s formalism, see for example the above mentioned R. Haag book!
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• The important point to note here is that quantum correlations as a
phenomenon was observed in quantum field theory many decades ago.

• So, not only in “atomic physics” and in Quantum Information.

• Probably, the best example is given by the Reeh and Schlieder theorem.
This theorem is saying that any state vector of a quantum field can be
approximated by an action of “local” operator acting on the vacuum. To
this end the operator must exploit the small but non zero long distant
correlations which exist in the vacuum.

• Other examples of quantum correlations in quantum field theory can also
be found.
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• Examples of quantum systems:

• Lattice models, solid body physics:

• Example 15. UHF - uniformly hyperfinite algebra.
Zn is the Cartesian product of integer numbers Z with n =

{1, 2, 3, . . . N}. Let α ∈ Zn be an arbitrary, fixed site of the lattice.
With each site α we associate a Hilbert space Hα. It is required
that each Hilbert space Hα is finite dimensional. The Hilbert space
associated with a finite subset Λ ⊂ Zn is given by HΛ = ⊗α∈ΛHα. We
put AΛ = B(HΛ). The algebra of operators associated with the whole
space Zn is equal to A =

∪
ΛAΛ.
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• The preceding example can be generalized.

• Example 16. Quasi local algebras.
Replace Zn by Rn, i.e we replace integer numbers Z by real numbers

R. In physical terms it means that now we are interested in continuous
systems. We associate a Hilbert space HΛ (usually infinite dimensional)
with the region (bounded subset) Λ ⊂ Rn. Put AΛ = B(HΛ). It means
that with a region Λ in Rn we associate local observables and these
observables generate the (specific) algebra AΛ. For Λ ⊂ Λ′ we have
Λ′ = Λ∪ (Λ′ \Λ) and according to Rule 4.4 one has HΛ′ = HΛ⊗HΛ′\Λ.

Then, the algebra of all observables is given by A =
∪

ΛAΛ.

• Note: observables are localized!

• BUT, this does not mean that states are localized!

• Such models are basic for Quantum Statistical Physics.
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• To say more on such models we need:

Definition 17. A state ω ∈ SA is called locally normal if ω|AΛ
is normal

for every Λ.

• Thus, a state is locally normal, if its restriction to an algebra associated
with any bounded region is given by a (local) density matrix.

• Usually, we are interested in locally normal states (related to stability of
the matter.
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• Example 16 still can be generalized. The motivation of that follows from
Rule 1: observables of a system associated with a region Λ ⊆ Rn do not
need to generate the algebra B(HΛ). We emphasize that this problem
is in “the heart” of Haag-Kastler approach to Quantum Field Theory!

• Example 18. Let Rn be a “coordinate” space of a field and Λ ⊂ Rn

be a region. With the region Λ we associate a C*-algebra AΛ (which
is not necessary of the form B(HΛ)). However, we are assuming that
additional conditions, which will discussed in the next lecture, hold for
the family {AΛ}Λ⊂Rn. Put A =

∪
ΛAΛ.
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